Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6374, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821493

RESUMO

Organic Cation Transporter 1 (OCT1) plays a crucial role in hepatic metabolism by mediating the uptake of a range of metabolites and drugs. Genetic variations can alter the efficacy and safety of compounds transported by OCT1, such as those used for cardiovascular, oncological, and psychological indications. Despite its importance in drug pharmacokinetics, the substrate selectivity and underlying structural mechanisms of OCT1 remain poorly understood. Here, we present cryo-EM structures of full-length human OCT1 in the inward-open conformation, both ligand-free and drug-bound, indicating the basis for its broad substrate recognition. Comparison of our structures with those of outward-open OCTs provides molecular insight into the alternating access mechanism of OCTs. We observe that hydrophobic gates stabilize the inward-facing conformation, whereas charge neutralization in the binding pocket facilitates the release of cationic substrates. These findings provide a framework for understanding the structural basis of the promiscuity of drug binding and substrate translocation in OCT1.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos , Humanos , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Transporte Biológico , Transportador 2 de Cátion Orgânico/metabolismo
2.
Commun Biol ; 6(1): 26, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631659

RESUMO

F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.


Assuntos
Trifosfato de Adenosina , Escherichia coli
3.
Nat Commun ; 11(1): 2615, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457314

RESUMO

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.


Assuntos
Proteínas de Escherichia coli/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Lipídeos/química , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Rotação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...